Following last Saturday’s successful flight of HABE 2 and the new addition of a “black box” style SD flight logger I have collected a wealth of data. Having spent some of yesterday writing a C command line program to parse through the log file, earlier today I managed to extract the information and pop it into an excel spreadsheet.

Having plotted some fancy graphs etc the results where fantastic. All of the graphs offer a unique story and contain lots of useful information – a great success. I’ve decided to distribute the excel spreadsheet containing all the raw data and graphs etc so people can have a look at all the information. It may prove useful to some. The excel workbook can be downloaded here (xlsx) and an older (xls) version here.

I’ve posted the graphs below for all to see:

A few brief notes on the graphs:

  • The temperature graphs have the ascent on the right (slightly warmer) and descent on the left (slightly cooler).
  • It can clearly been seen that the coldest temperatures faced reside in the 10-12km altitude bracket. As the balloon rises above this altitude it actually gets warmer contrary to popular belief! The science behind this: the upper layers (stratosphere) absorb UV radiation far more efficiently than the lower layers, therefore this acts as a heating effect – it also prevents extreme UV readings on the surface of Earth.
  • The solar panel readings are extremely interesting and probably contain the most information. On initial observation I didn’t see that much information, but on closer observation there is a lot said. Firstly – why the mass scatter of points everywhere?! Well, I believe this is due to the swinging of the payload (due to winds); as the solar panels were mounted on top of the payload and the sun was relatively low in the sky (Winter), this would have caused differing levels of light falling on the solar panels, indeed at some point they were probably in shade hence the many near 0v readings. Secondly you may ask, ok, why isn’t that the case for the lower altitudes (<10km)? The answer to this – the payload was in the clouds through this part of the flight. Clouds act to diffuse the light from the Sun and therefore are bright all around inside them – so whether the payload was on it’s side or pointing upright the light falling on the solar panels was much the same. On close inspection (you made need to download the full quality versions – excel workbook) the readings seem to fall into rectangles at lower altitudes – I believe this is the case because of the different cloud layers. From the photos taken by the onboard camera it’s clear that there were multiple cloud layers and each layer would’ve had unique properties – hence differing voltage/power constraints. Interesting!

I have annotated the first altitude vs SP1 voltage graph illustrating the different “rectangles” – take a look:


I’ve also done the customary 3D Google Earth plot of the flight path. You can download the KML file here and have a play about with it in Google Earth.


Last but not least, here are some interesting facts about the flight:

Max Internal Temperature: 19.6
Max External Temperature: 16.3
Min Internal Temperature: -26.8
Min External Temperature: -63.1
Max Altitude Recorded: 29958
Max Voltage (SP1): 7.67
Max Voltage (SP2): 8.96
Average Voltage (SP1): 1.88
Average Voltage (SP2): 2.51
Max Power/mW (SP1): 406.28
Max Power/mW (SP2): 419.23
Average Power/mW (SP1): 44.58
Average Power/mw (SP2): 58.92